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COMMENT 

Validity of the Boltzmann distribution under non-linear 
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NSW 2006, Australia 
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Abstract. The Boltzmann distribution exp(-AE,) for the occupancy p ,  of a fixed energy 
level E, derives from a maximum entropy procedure under the constraint of energy 
conservation 1, E , p ,  = U,. This constraint is linear in the pl.  It is shown that the form of 
the distribution still holds when the energy levels E, depend on the occupancies p , ,  provided 
that d U  1, E,  dp, is a perfect differential so that energy is conserved. The energy constraint 
then becomes non-linear in the p , .  Specific applications of this result are covered, in 
particular the Poisson-Boltzmann equation for the electrostatic potential in plasma in 
thermal equilibrium. 

The Boltzmann, or canonical, distribution for the probability of occupancy pi of a 
fixed energy level E, is 

p ,  = Z(A)-’ exp(-AE,) (1) 

(Boltzmann 1871), where the partition function Z(A)  is given by insisting that (1) be 
normalised, and A is in principle expressible in terms of the expectation value of the 
energy, U,, by substituting (1) into the equation of energy conservation. The distribu- 
tion is derived by maximising the information entropy relative to uniform measure on 
the i, 

subject to the constraints of normalisation and energy conservation alone; A is the 
Lagrange multiplier associated with the latter. To work out the form of this constraint, 
calculate the energy increment d U  by building up the occupancy bit by bit: 

d U = C  E,  dp, (3) 
I 

whence, on integrating and choosing the zero of energy appropriately, 

U = c Etpt. (4) 
I 

Energy conservation states simply that U = U,. It is assumed that the expectation 
value coincides with the actual value. 
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(A technical point: during the build-up process the probability distribution appears 
not to be normalised; initially all the p i  are zero. In fact (3) is a shorthand form in 
which p i  is postulated to represent a normalised physical quantity.) 

The variational procedure used is the principle of maximum entropy, an enormously 
powerful tool introduced into physics and probability theory in fullest generality by 
Jaynes (1983). Ab initio derivation of the Boltzmann distribution have traditionally 
derived the principle combinatorially (see, for example, French 1958); but it also 
arises in many other diverse ways, as stressed by Jaynes (1986). 

Now suppose that the energy levels are brought to depend dynamically on their 
occupancies, so that E,  is not only a function of i but also of the p i .  It will be shown 
that ( 1 )  still holds, albeit as a transcendental relation between the p i ,  provided that 
aE, /apj  = a E j / a p i ;  (3) is then always a perfect differential, and Ei = aU/api.  Extension 
to the functional case, with continuous suffixes, is immediate. Clearly if (3) is imperfect, 
the system is non-conservative and it makes no sense even to refer to energy con- 
servation. 

As before, we maximise (2) subject to normalisation N = 2, p i  = 1 (with Lagrange 
multiplier (In Z - l ) ,  for convenience) and energy conservation. Now 

d[S -(In 2 - 1 )  N - A  U] = [ -ln(Zp,) - AE,( p ) ]  dpi 
I 

= O  VdPi (6) 

at an extremum, whence pi  = 2-’ exp[ -Mi( p ) ]  immediately. It is no longer trivial to 
isolate Z(A), and the solutions for p i  may be non-unique or complex. Complex 
solutions imply the absence of any physically meaningful maximum; the concept of 
ordering numbers according to their magnitude, so as to find the maximum, is 
necessarily restricted to the reals. In linear-constraint theory, by contrast, the existence 
of a unique absolute maximum is guaranteed (Jaynes 1963). 

The significance of this result is in applying the principle of maximum entropy to 
a class of problems with constraints non-linear in the p i ,  and in establishing conditions 
for the validity of the Boltzmann distribution. Necessary conditions are that energy 
be conserved and that no other constraint (apart from normalisation) operate. In 
addition, the solution for p i  must be real; no general test for this condition exists. 

Specific non-linear-constraint problems have arisen before. Joyce and Montgomery 
(1973) derived the Boltzmann distribution (and the principle of maximum entropy, 
using combinatorics) for a quadratic form of U (  p )  arising from charge-charge interac- 
tions in two dimensions. This derivation is reproduced by Ting et a1 (1987). E, becomes 
the potential + ( r ) ,  and its dynamical relation to pi  = p ( r )  is Poisson’s equation. The 
‘self-consistent’ equation for 4 ( r )  found by eliminating p (  r )  between Poisson’s 
equation and the Boltzmann distribution is called, logically, the Poisson-Boltzmann 
equation; it is more usually-but incorrectly-written down without regard to non- 
linear constraints. Its solution for given A is unique (Garrett and Poladian 1988). 
Another quadratic form of U (  p )  has been considered by van Kampen (1964) in the 
context of imperfect gas theory; van Kampen states that van der Waal’s equation was 
derived in similar fashion long before (Ornstein 1908). Non-linear constraints in 
maximum entropy analysis are nothing new! Evans (1979) has asserted that 11 f noise 
can be treated by means of a modified non-linear constraint analysis, and also that in 
some circumstances the use of maximum entropy with non-linear constraints is incon- 
sistent, a claim denied here. Finally, a mathematical analysis identical to the present 
is used in Bayesian image processing, in which the noise is represented by a non-linear 
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statistic (almost always x2) and is constrained to take a particular value; see Gull and  
Skilling (1984). These authors confirm uniqueness in the most commonly encountered 
case, but it can fail for phaseless Fourier data: Gull and Daniell (1978) quote the 
existence of a counterexample due to Skilling. 

The author acknowledges receipt of a Professor Harry Messel Research Fellowship 
from the School of Physics of the University of Sydney. 
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